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Inequalities for the M/G/ Queue and Related Shot Noise Processes

By

Fred Huffer
Florida State University

1. Introduction and Main Results.

This report deals with shot noise processes X(t) which are formed

by the superposition of pulses having random durations. The parameter t

will be either a point on the line or on the circle which are denoted by

L and C respectively. The simplest such process is the M/G/- queue

which is formally defined by

x " m I TiTi1+zi ]1

where {T < i< -} are the ordered arrival times of a Poisson process

having rate A, {Zi:-< i< -} are nonnegative random variables with finite

expectation which are independent and identically distributed according to

the distribution F, and I a,b] denotes the indicator function of the

closed interval [a,b]. Thus X(t) is the number of busy servers at time

4 t in an M/G/- system where customers arrive at rate X and service times

have the distribution F. X is a stationary process with EX(t) - A(EZ0)

for all t. We use the notation X % L(A,F) to refer to the process X

determined by A and F.

We now define an analogous process X on a circle having circumference

P. Let {Z :1 < i < n} be independent random variables satisfying

0 < Zi < P for all i. Fi will denote the distribution of Z i . Place
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n arcs with lengths ZI, 2,...,Z n  uniformly and independently on the

circle. For any point t on the circle, let X(t) be the number of

these arcs which cover t. It is more convenient notationally to think

of X as a periodic step function (with period P) defined by

n
X i [TiPT +Zi

where {T 1 :< i < n} are independent random variables distributed uni-

formly on the interval [0,P) and J[ab] is a periodic indicator function

4 defined when 0 < b-a < P by

J[a,b] k= I[a+kP,b+kP]

We use the notation X 'I Cp(FIF 2 ,... Fn) to refer to the process X on

the circle (or the equivalent periodic process on the line) which is

determined by the distributions FI,F2,.

We shall present results which indicate how the processes L(X,F) and

Cp(FIF 2, ... ,Fn ) change as the distributions F or Fi are altered to

increase their variability. The precise notion of "increasing variability"

we shall use is contained in the following definition.

Definition: Suppose Y and Z are random variables with Ely! <

and EIZI < - having distributions F and G respectively. If

EO(Y) < EO(Z) for all convex functions 0: R - R, then we say that

F-4 G or equivalently Y-1 Z.

Note that Y- Z implies EY - EZ and Var Y < Var Z.

2
4

* ',~t



V_ T

The variability ordering . is well known and has been extensively

used to derive inequalities in queueing theory. See Whitt [141 for an

example of this use and Stoyan [11,12] for a survey of some of the litera-

ture. Rolski [6] and Stoyan [12] are good sources on partial orderings of

probability distributions. Ross [7] gives an elementary treatment of

variability orderings.

Our results concern random variables which may be written as func-

tionals H(X) of the process X. We assume that H(f) is defined for

all f in some class of functions F. The relevant classes of functions

are now given. Let G be the set of upper semicontinuous step functions

which take on only nonnegative integer values, have no jumps of magnitude

greater than one, and have only finitely many jumps in any bounded interval.

Clearly P{X eG} - 1 for any of the processes X " L(X,F). Let Gn P  be

the set of periodic step functions (with period P) which can be written

in the form

n J
f i [ai,bi]

for some values of ai and biV

*i The principal conditions we shall impose on the functionals are the

following.

Definitions:
0

If H(fvg) + H(fAg) > H(f) + H(g) whenever fg,fvg,f Ag all belong

to F, we say that H is L-superadditive. If both H and -H are

L-superadditive, we say that H is L-additive.

3



A function h with k arguments is said to be L-superadditive if

h(xv y) + h(xA y) > h(x) + h(y) for all x and y in Rk. This condi-

tion was introduced by Lorentz [2]. L-superadditive functions have

been used to obtain inequalities in a variety of settings. See Marshall

and Olkmn [3] for a survey of some of these uses.

Here are some other conditions we shall use. All functions below belong

to the relevant domain F. H is bounded if there exists a constant b such

that IH(f)I < b for all if. H is increasing if H(f) < H(g) whenever

f < g. H is local if there exists a bounded interval [c,d] such that

H(f) = H(g) whenever f(t) = g(t) for all t in [c,d].

We now state some special cases of our main results. Consider the

following situations.

* * * * *
(1.1) Let X %, L(X,F) and X L( L(k ,F ) with X - A and F-i F

Suppose H is a local functional defined for all f in G. Assume that

H is bounded, or alternatively, assume that H is increasing with both

EIH(X)I <- and EIH(X*)I < C.

(1.2) Let X "u Cp(F 1,F2,..,Fn) and X " Cp(F 1,F2,.. .,F) with

F -i F for all i. Assume that H is bounded on G.
i i n,P*

(1.3) Theorem: The statements (a) and (b) given below hold true for

both situations (1.1) and (1.2);
,

(a) If H is L-superadditive, then EH(X) < EH(X )

(b) If H is increasing and L-additive, then H(X) - H(X ).

4
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2. Examples.

Let X and X be as in (1.1). To obtain consequences of Theorem

(1.3) we need to exhibit local functionals H which are L-superadditive

or increasing and L-additive.

(2.1) Example: Suppose h is a k-dimensional L-superadditive

kfunction, h(xvy) + h(xAy) > h(x) + h(y) for all x,y cR . When h

has continuous partial derivatives a h(x)/axi axj the condition of

L-superadditivity is equivalent to the requirement that a h(x)/3xiaxj > 0

for all x and all i * J. Let tl,t 2,..., tk be fixed times. Define

0 the functional H by H(f) = h(f(t1 ),f(t 2 ),.. .f(tk)). H is easily seen

to be local and L-superadditive. If h(xX 2,. .. ,xk) is bounded (or

increasing) when xi > 0 for all i, then H will be bounded (or
i*

increasing) and thus EH(X) < EH(X*). A simple special case is h(x,y)- xy

which gives EX(s)X(t) < EX*(s)X*(t) for all s and t. Since

EX(s) - EX*(t) for all s and t, this says that X is "more correlated"

than X.

(2.2) Example: Let A be a bounded set and T be any function satisfying

T(t)= 0 when t A. Define

I if f(t) > T(t) for all t,

H(f) - : otherwise
0

H is clearly bounded and local and it is L-superadditive because

H(fAg) - H(f) AH(g), H(fv g) > H(f) v H(g) and H(f) AH(g) + H(f)v H(g) =

H(f) + H(g). Therefore EH(X) = Prob{X> \Y} < Prob{X >T} = EH(X*).

5
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Suppose now that Ti satisfies 'i(t) = for t A and define

1if f(t) < 'Y(t) for all t,

H(f)=

10 otherwise

Again, H is bounded, local and L-superadditive so that (1.3a) yields

Prob{X < T}< Prob{X *< }

By considering functions TY of the form

cfor t EA

Idfor t 0A

where d -0 or and applying the above facts we obtain the stochastic

orderings

sup{X(t):tEAl > st sup{X (t):tEA}, and

infXt:CI<s in I tt:

Here > st means "stochastical.ly greater than"

(2.3) Example: Let 7T be any measure on the strip [a,b] x [0,-).

0 Use (t,x) to denote a point in [a,bI x (0,00). For any measurable

function f define the set Df - {(t,x):f(t) > x}. Now define H by

H(f) - T(Df). Since D f g Df UD 9and 0fA -D n D 9we have

*H(f vg) + H(f Ag) iIT(D fU D) +It (D f nD) 9 7T(Df) + Tr(D ) H(f) + H1(g).



Thus H is increasing, local and L-additive. If Tr is chosen so that

EH(X) < and EH(X ) < -, then (l.3b) gives H(X)-j H(X ).

As special cases of this class of increasing L-additive functionals

we give the following. In each case it is easy to describe the measure iT

which yields the functional H.

(a) Choose any values tlt 2 ,...,tk and yl,Y2,...,yk and define

H by

k
H(f) = I {f(t Y

(b) Choose T > 0 and let T be any measurable function. A continu-

ous version of (a) is

T
H(f) = J 1{f(t) > l(t)}dt

(c) We may similarly define

H(f) =o (f (t)-T(t)) dt

where (Z) denotes the positive part, (Z)+ = max(Z,O).

(2.4) Example: We now present a functional H which is not increasing
,

but still yields H(X)-3 H(X ). This functional does satisfy a weaker condi-

tion given in section (4). We shall describe the functional H in terms of

the M/G/- queue. Choose an integer k and a duration L. Let H(X) be

7



the number of customers who arrive during the interval [0,L] and find at

least k customers already being served. Using the notation in section

(1) we may write

H(X) I IH) {= i< Ti < L,X(T) > k+l}

This functional depends explicitly on the values of the arrival times Ti

and cannot comfortably be regarded as a functional of just the sample path

X. Alternatively, we can take H(X) to be the number of customers who

* arrive during [0,L] and find at most k customers already being served.

This definition also yields H(X)-i H(X*).

(2.5) Example: Now take X and X to be the periodic processes of

(1.2). All of the previous examples may be restated in terms of these

periodic processes. We then obtain various inequalities concerning coverage

problems on the circle. For example, let Hk(X) be the indicator of the

event that every point on the circumference is covered at least k times,

Hk(X) - I{X(t) > k for all 0} Hk is bounded and L-superadditive (as in

example (2.2)) so that EHk(X) < EHk(X*). Taking k - 1 yields an inequality

which implies the truth of a conjecture made by Siegel [8] concerning

coverage probabilities. (In our notation Siegel's conjecture was that

EH1(X)< EHI(X) whenF F ... Fn and F1 = F2  .. Fn with F1* * *
and F1 obeying a condition somewhat stronger than F1- F1.)

Siegel (8,9] also considered the distribution of the total length of

the uncovered portion of the circumference. A more general quantity is the

5 total length of that part of the circumference covered at most k times,

denoted by Vk. More formally,

8S'
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vkWX P kdt. As in example (2.3b), it is easily shown that
k( 0  {X(t)<

-Vk is bounded, increasing and L-additive and thus Vk(X) - Vk(X ).

Siegel and Holst [10] give results concerning the distribution of

the number of uncovered gaps on the circumference which we shall denote by

G. Using the notation of section 1 we may write

n
G(X) = I IX(Ti)=i }

As in example (2.4), the functional -G does not quite satisfy the condi-

tions in (l.3b) but does satisfy the weaker conditions given in section 4

so that G(X)-3 G(X*).
The results in this example concerning the functionals R and Vk

kk

were first given by the present author in [i]. The methods and results

of [1] are similar to but less general than those of this paper.

I
16

I
m"9

.. I. . ,..



3. Corollaries.

Theorem (1.3) sometimes allows us to compare the processes X and X

when the arrival rates differ, X # X*. Using this we can prove a result

*concerning the behavior of X when the time axis is rescaled.

* . Notation: Let 6 denote the distribution which places all of its
y

mass at y, 6y(x) = 0 for x < y and 6 (x) = 1 for x > y.
y y

(3.1) Corollary: Suppose that X 't L(X,F) and X L(X ,F ) and

there exists a constant such that 0 < $ < 1, X * = X and

F- (1-8)60+aF*. Let A be the countable set of arrival times of a

Poisson process with arbitrary rate cl. Let H be a functional satisfying

the conditions in (1.1) and assume also that for any f E G, H(f) = H(f+I A)

almost surely. Under these conditions (l.3a) and (l.3b) hold true.

In this corollary, X is composed of pulses which tend to be longer

than the pulses in X but which arrive at a slower rate. These differences

are balanced so that we still have EX(t) = EX (t).

Proof of (3.1): Let X # N L(X #,F # ) with X# = X and F# = (I-)0 +6F*.

Since F-3 F , Theorem (1.3) applies directly to X and X# . Now note that

H(X*) and H(X# ) have the same distribution because X may be obtained

S from X# by eliminating those pulses in X# which have zero duration.

More precisely, X# has the same distribution as X + IA where A is the

set of arrival times of an independent Poisson process with rate of arrivals

0 equal to (i-$)X. By our assumption on H we know that H(X ) and H(X )

have the same distribution and this completes the proof.

The simplest application of (3.1) is to the case where F = 6y and

0F = y The verification that 6 By (1-0)60 +66y when 0 < 6 < 1 is

. 10



immediate. This example may be generalized. Let F o 8 denote the distri-

bution defined by (F o 8)(x) = F(Bx). We now show that F- (1-a)60+8(F oa)

when 0 < 8 < 1. Let R be a random variable taking on the values 0

and 1 with probabilities 1-8 and 8 respectively. Let V have the

distribution F and be independent of R. Define W = RV/8. The distri-

bution of W is (-8)0+8(Fo 8). Since E(WIV) = V, Jensen's inequality

4 for conditional expectations gives EO(V) < EO(W) for all convex functions

and thus V-q W as desired. This justifies the application of (3.1)

when X % L(X,F) and X ,u L( ,F ) with X = 8X, F*(x) = F(8x) for all

x and 0 < a < 1.

(3.2) Corollary: Let X L L(X,F) and H be a bounded and local

functional which also obeys the condition in (3.1). For 8 > 0 define

Xo8 by (Xo )(t) = X(8t) for all t.

(a) If H is L-superadditive, then EH(Xo 8) is a decreasing function

of 8 for 8 > 0.

I(b) If H is increasing and L-additive, then H(X o8)- H(Xo y) when-

ever 8 > y>0.

Proof of (3.2): Assume first that 8 # 0. To verify (3.2a) it suffices

to show that EH(Xo 8) > EH(X) when 8 < 1. Similarly, to verify (3.2b) it

suffices to show that H(X) M- H(Xo 8) for 8 < 1. But these follow from

(3.1) and the previous discussion because X o L L(8X, F o 8). The case4

8 = 0 is handled by taking limits. Since H is local and X(t) is

constant in some neighborhood of t = 0 almost surely, H(Xo 8) - H(XoO)

almost surely as 8 + 0. Thus, for example, EO(H(Xo 8)) t EO(H(Xo 0)) for
a
any convex as 8 + 0.

11
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The condition in (3.2) that H be bounded is just a convenient way

to ensure that all expectations are finite. This assumption can easily be

weakened.

For an application of (3.2a) we go back to example (2.1). Choose any

constants a1,a.2 9,.. .,ak and define

E 1 if x i> ai for all i,
h(xl,x 2,..,xk) 1.O otherwise

*h is an L-superadditive function on Rk By (3.2a), Eh(X(at 1 ),X(at2),..

X(atk) Prob{X(8t ) > a i for all i} is decreasing in a for any values

of t1,t 2 9..9tk

a For an application of (3.2b) we go back to example (2.3). Choose a

constant c > 0 and define

a JO I{X (t) >c}t

(3.2b) implies that Y -4Y~ when 8 > Y.

12



4. Proofs of the Main Results.

In section 1 we stated a theorem concerning processes formed by the

superposition of rectangular pulses. Now we shall consider pulses of a

somewhat more general shape; the pulses will increase monotonically to

unit amplitude, remain at unit amplitude for a random duration, and

then decrease monotonically back to zero. The pulses form a parametric

family of functions denoted {ge:e > d} where the parameter 0 indicates

the total duration of a pulse and d is the duration of the briefest

pulse in the family. The complete definition is given below.

Choose b > 0 and c > 0. Let E be any increasing function on

[0,b] with E(0) > 0 and (b) - 1. Let i be any decreasing function

on [O,c] with (0) f 1 and 4(c) > 0. For 6 > b+c define

E(t) for 0 < t < b

1 for b < t < 6-c,

9g0 (t) = (t-0+c) for 0-c < t < 9,

0 otherwise .

In this parametric family the minimum duration is d = b+c.

The family {g0 :0 > d} has two properties we shall need. First note

that

(4.1) g0 (t) - 0 unless 0 < t < 6

The second and more important property is

13



(4.2) g++6= g0+ v (Sg0+9) and

Sgo = g6+C ^ (S E0+6

for all 6 > d, E > 0, 6 > 0

Here we have used S to represent a shift operator; (S f)(t) =f(t-E)
E C

for all functions f and all t.

We now define a shot noise process on the line (L) as in section 1.

Let T i:-C < i < 00} be the ordered arrival times of a Poisson process

having rate X. Let {Z i:-- < i < -} be independent with the distribution

F and satisfy Prob{Z i > d} - I and EZi < o. Define X\%L(X,F) by

( X(t) = g (t-T)i=_ gi

Next we define the analogous periodic process with period P which

is equivalent to a process on a circle with circumference P. For

d < e < P define the periodic pulse g; by

I ge(t-kP)

Let Zl,Z 2,..., Zn  be independent random variables with distributions

F1 ,F2,... ,Fn  and satisfying Prob{d i < Zi < P} - 1 for all i. Let

T1,T2 ,... ,Tn  be independent random variables distributed uniformly on

the interval [OP). Define X % CP(F 1 ,F2 ,...,F n ) by

n
X~t) I- g' (t-Ti

414

' -• - . . .. .-i . . ." . ... , _ .
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We shall first prove a theorem concerning Cp(FIF 2 , ... ,F).

From this we obtain a corresponding result for L(X,F). The results

stated in section 1 will follow as corollaries.

Reusing the notation of section 1, we take Gn,P  to be the

class of all functions f which can be written in the form

n
f n St ge

i=l i

for some values of ti and ei with d <0 i < P  for 1 < i < n.

In the discussion below, H will always be a functional defined on

some class of functions which includes G
n,P*

Lemma: If H is L-superadditive, then

(4.3) H(f+Stg +E+6 ) + H(f+St+Fg;)

> H(f+Stg;+C) + H(f+St+eg;+6 )

for all f eG n,p, all t and all 6 > d, > O, 6 > 0 satisfying

6+e+6 < P.

Proof of Lemma: Using (4.1) and (4.2) we obtain

go+-+6 = g V+ (SEgo+6 ) and

0

S g; g+E A (Seg;+6 )

for all 0 > d, e > 0, 6 > 0 satisfying 0+E+6 < P.

15
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Applying St and adding f to both sides of these equations leads to

= f++S~)I- f tge+F-+6 (f+Stg4+c) V (f+St+Eg4+6)

and

f+St+g; - (f+Stg+) A (f+S t+g+6)

Now L-superadditivity yields (4.3).

* (4.4) Theorem:

Let X % C p(F1,F2,..F n )  and X' Cp(F 1 ,F2 ,2 ...,F) with F i  Fi

for all i. If H satisfies (4.3) and H(f) > 0 for all f E G• - n,p,

then EH(X) < EH(X*).

Proof of Theorem: The condition H > 0 ensures that EH(X) and

EH(X*) are well defined. It suffices to prove (4.4) in the special case

where Fi W F for 1< i < n-l and F "  Fn. The general result is
i i n n

then obtained by repeated applications of this special case. Assuming

F i Fi  for 1 < i < n-l allows us to define X and X on the same
o

probability space as follows

X - W+ST n gz and X W+ST n g 'n *

where W n-i Sg' Z F for all i and Z %F
i-l TZ I zi n n'

61



Let A be the o-field generated by TIZ1,T2,Z2,.. T nIZn I.

Conditional on A, we may regard W as a fixed (nonrandom) function.

The next lemma shows that E(H(X)IA) < E(H(X*)IA). Taking unconditional

expectations completes the proof. (Note: If either EH(X) or EH(X*)

is infinite, the same basic argument works. However, instead of the

convenient notation of conditional expectation, we must now write the

expectations as multiple integrals and then use Fubini's theorem.)

(4.5) Lemma: Choose any f E Gn-1 ,P. Suppose that H > 0 on

G and that H satisfies (4.3). For d < 6 < P define
Sn,P

(O) = tH(f+Stg;)dt

Let Y1 and Y2 be random variables taking values in [d,P). If

Y Y21 then E$(Y1 ) < E$(Y 2).

*Proof of Lemma: Integrating with respect to t in (4.3) and

using the periodicity of g; yields

((e+8E+6) + D(e) > D(e+E) + v(+)

for all 6 > d, e > 0, 6 > 0 satisfying B+E+6 < P. This says that (D

is convex in the interval [d,P). If D can be extended to be a convex

function on the entire real line, then YI - Y2 implies E$(YI ) 
< ED(Y2).

Even when (D cannot be so extended, we still have E(Y 1) < E$(Y2). For

this argument and further details see section 7.

17



Theorem (4.4) implies the truth of (1.3a) in situation (1.2). To

obtain a result which implies (1.3b) we need the following lemmas.

Lemma: If H is increasing and L-additive, then

(4.6) H(f+S tg+C 6) + H(f+St+Eg;)

-H(f+S g;+) + fS cg+)

H(f+S tg;) < H(f+Stg;+E), and

*H(f+S ~g;) < H(f+Stg;_,.)

for all f Gn-1,.P' all t and all e > d, c > 0, 6 > 0 satisfying

6+E+6 < P.

This lemma is trivial and we state it only because there are functionals

which satisfy (4.6) but are not both increasing and L-additive. The

functional -G of (2.5) is such a functional.

Proof of Lemma: The lemma follows from noting that g4 < g4-

S 9~ < g4 and both H and -H satisfy (4.3).

(4.7) Lemmna: Let * be any convex function. OOH will denote the

composition of and H; (~OH)(f) - OHf)

(a) If H is increasing and L-additive, then OOH is L-superadditive.

(b) If H satisfies (4.6), then OH satisfies (4.3).

18



Proof of Lemma: To prove (a) we must show that (oH)(f vg)+

(OoH)(fAg) > (OoH)(f)+(OoH)(g). Let w = H(f), x = H(g), y - H(ft-g)

and z = H(fv g). By the assumptions on H we have y < wix,

z > w V x and y+z - w+x. Thus by convexity O(y)+O(z) >_ (w)+0(x)

as desired. The proof of (b) is similar.

b*

(4.8) Corollary: Let X and X be as in (4.4). If H is

bounded on Gn P and satisfies (4.6), then H(X)- H(X*).

Proof of Corollary: Let be any convex function. oH is

bounded on Gn,P  so that without loss of generality we may assume that

(4oH)(f) > 0 for all f c G n, P * OH satisfies (4.3) by the preceding

lemma. Now theorem (4.4) applies to yield EO(H(X)) < EO(H(X*)) thus

completing the proof.

To obtain results for L(X,F) we first extend (4.4) and (4.8) to

allow for a random number of pulses. Let M be a Poisson random variable

with mean XP. Let T1 T2,T3 ,... be a sequence of independent random

variables uniformly distributed on [0,P). Let Zl,Z2,Z, be i.i.d.

according to F and satisfy P{d < Zi < P} - 1. The random variables

M, {T i} and {Z i} are jointly independent. Define

M
X= S g'

il Ti Zi

To refer to this periodic process we use the notation X % C (X,F).
P

(4.9) Corollary: Let X % Cp(X,F) and X I. Cp(X*,F*) with

A - X and F - F . H is a functional defined on some domain which

19



includes G where G consists of a single function which
n=O n,P OP

is identically zero.

(a) If H > 0 and H is L-superadditive, then EH(X) < EH(X*).

(b) If H is bounded, increasing and L-additive, then

H(X) - H(X*).

Remark: In (a) we may replace L-superadditivity by a condition like

(4.3). In (b) we may replace the conditions increasing and L-additive

by a condition like (4.6). The details are omitted.

Proof of Corollary: Conditional on the event {Min}, the process

Cp (A,F) has the same distribution as Cp(FI,F 2, ...,Fn ) with Fi = F for

all i. Thus we may condition on the value of M and use (4.4) and (4.8)

to obtain (a) and (b) respectively.

Let F be the collection of all functions f which can be written

in the form

k
f(t) - ge (t-T i )

il i

where 0 < k < and 0i > d for all i. When k 0, f is identi-

cally zero. When k = -, we must also require that f(t) < - for all

t and that no bounded set contains Ti for infinitely many values of

* i. For X . L(X,F), it is clear that Prob{XEF} = 1.

We now state the basic result for L(X,F).

(4.10) Theorem: Let X 'x L(X,F) and X , L(X*,F ) with X - X

and F - F . Let H be a local functional with domain F. Assume that
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* F*(B

F and F have bounded support, F(B) =F (B) 1 for some B < .

Under these conditions statements (a) and (b) of (4.9) are true. We

also have:

(c) If H(f) > 0 and H(f+S tgo+E+) + H(f+St+Ego

H(f+S tgO+ ) + H(f+S t+g 0 +9  )

for all f E F, all t and all e > d, c 0, 6 > 0, then EH(X) < EH(X).

(d) If H is bounded and H(f+Stg@+e+) + H(f+St+eg0 )

- H(f+S tge+) + H(f+St+cg@+6

H(f+Stg0 ) < H(f+S tg+) and

H(f+St+Ege ) : H(f+Stg+ E)

for all f e F, all t and all 9 > d, E > 0 and 6 > 0, then H(X) H(X).

The slightly weaker conditions in (c) and (d) are necessary to handle

examples like (2.4).

Proof of Theorem: Since H is local, we may assune without loss of

4 generality that H(f) depends only on the values f(t) for t belonging

to the interval [0,L]. Choose a value of P such that P > L+B. Let
*p(**

Y Cp(X,F) and Y* I- C ( ,F ). The periodic pulse Stgo is made up

4 of translated copies of go which are separated by intervals of length

at least L when 0 < B. Thus at most one of these copies can "intersect"

the interval [O,L]. In the definition of Cp(X,F) we used a Poisson

4 number of uniform random variables. Equivalently, we could have used the
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arrival times of a Poisson process with rate X on the interval [O,P).

These remarks make it clear that X and Y can be defined on the same

probability space in such a way that X(t) - Y(t) for 0 < t < L. To

do this we take

Y~t) ' (t-Ti)I{
Y(t) =i_ gzi -[- < Ti < P-B}

where Zi and Ti are the same random variables used in defining X.

Thus H(X) and H(Y) have the same distribution. Now the result follows

by applying (4.9). Statements (c) and (d) follow from the remark after

(4.9). The details are omitted.

Many of the conditions in (4.10) can be weakened. First, we can

eliminate the requirement that F and F have bounded support. To

do this we need the following lemma which will be proved in Section 7.

We shall also weaken the requirement in (4.9b) that H be bounded.

Definitions: Given the random variables V and {V :1 < n < -1
n -

we say that V zOV if Prob{V -V for all sufficiently large n} = 1.
n n

The symbol t is used to indicate that a sequence is increasing.
4

(4.11) Lemma: Let V and W be nonnegative random variables with

EV < - and EW < . If V -4 W, there exist sequences {V I and {W nn n

of bounded nonnegative random variables satisfying V n+, W n+, V ,

W lo W and V - W for all n.

n n n
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E Using lemma (4.11) we obtain the next fact.

(4.12) Lemma: Let X and X be as in (4.10) except that now

F and F are no longer required to have bounded support. Let H be

any local functional. There exist sequences of processes {X n1 and
n

{X } with the properties given below.

* *( *,F

(a) X n L(X,F n), X n.n L(X F ) and F n- F for all n.nn n n n

(b) For all n, the distributions F and F have bounded support.n n

(c) X + and X t.!n n

(d) Choose any bounded interval [a,b] and define A to be the' n

event that X n(t) = X(t) for all tE[a,b]. Then Prob{A n

occurs for all sufficiently large n} = 1. A similar property

holds for X and Xn

(e) H(X n ) => H(X) and H(X ) => H(X ).

Proof of Lemma: Let Z and Z be random variables with distribu-

tions F and F respectively. Since Z - Z* there are sequences

{Z } and {Z*} with the properties given in (4.11). Let F and F
n n n n

denote the distributions of Z and Z respectively so that F - F
n n n n

for all n. We now construct the sequence {X }. The argument for {X }
n n

is the same. Construct independent copies of the sequence
dist.

(Z :1 < n < -} indexed by the letter i; {Z :1 < n < n{Z :l<n<-,
n -i,n -n --

for - < i < -. Let {T i:- < i <} be as in the definition of

L(X,F). For 1 < n < and all t define
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Xn(t) = gz (t-Ti)
i=-c i,fn

and take X = X,. Clearly X % L(X,F) and X n L(X,F ) so that (a)n f

is true. Properties (b) and (c) follow immediately from the properties

of {Z } given in (4.11). Because EZa < o, the number of pulses inn

X which "intersect" the interval [a,b] is almost surely finite.

(It is easily shown that the number of values of i for which

[Ti,Ti+Zi,] intersects [a,b] has a Poisson distribution with mean

X(b-a+EZ).) Combining this observation with the fact that Z *Z
i,n i,

for all i shows that (d) is true. Finally, (e) is an immediate

consequence of (d).

We can now give a more widely applicable result for L(A,F).

(4.13) Theorem: Let X nu L(X,F) and X \ L(X ,F ) with X = A

and F - F . Let H be a local functional with domain F.

(a) If H > 0, H is L-superadditive and H satisfies either

condition (i) or (ii) below, then EH(X) < EH(X*).

(i) H is increasing.

(ii) There exists an increasing functional Q such that

H(f) < Q(f) for all feF, EQ(X) < - and EQ(X) <00.

(b) If H is increasing and L-additive, EIH(X)I < and

EIH(X*)f < -, then H(X)-a H(X*).

Remark: Results (a) and (b) above can be modified in the manner of

statements (c) and (d) in (4.10).
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Proof of (a): Let {X I and {X*} be the sequences in (4.12).n n

Using (4.10) we have EH(Xn) < EH(X*) for all n and by (4.12e) we

have H(X ) z1H(X) and H(Xn ) m H(X*). To obtain EH(X) < EH(X )
n n

we need only show that EH(X) = lim EH(Xn) and EH(X ) = lim EH(X).
n 
-  ° °  n n 

"
- n

If condition (i) holds, then H(Xn ) and H(X n)+, so that the monotone

convergence theorem completes the proof. If condition (ii) holds, then

H(Xn ) < Q(Xn ) < Q(X) and H(X) < Q(X) < Q(X) for all n, so the
n - n -n - n-

result follows from the dominated convergence theorem.

Proof of (b): First note that H is bounded below. H is local

and there is positive probability that no pulses "intersect" the interval

which affects H. Thus EIH(X)I < - implies 1H(O)1 < - where 0 denote-

the function which is identically zero. This shows that H is bounded

4below by H(0).

Let * be any increasing convex function. Clearly *oH is increasing

and bounded below and by Lemma (4.7) it is also L-superadditive. Thus we may

4 apply the result of part (a) to conclude EO(H(X)) < EO(H(X )). Taking

O(x) = x yields EH(X) < EH(X*).

Now take € to be any convex function and let u = H(O). Since

the graph of has a supporting line at the point (u,O(u)), we can

write 0 as O(x) = O(u) +a(x-u) +y(x) where a is a constant and y is

a function which is convex and increases on the interval [u,-). From
[*

4 Iabove, we know that Ey(H(X)) < Ey(H(X*)). Therefore, to prove that

EO(H(X)) < EO(H(X*)) it suffices to show that EH(X) = EH(X )

For all b > 0 define Ob by Ob(x) -(x Ab). h is convex and

[* bounded below. Therefore ObOH is bounded below and L-superadditive

25
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(using lemma (4.7)). This allows us to use (4.10) to conclude

EOb(H(Xn)) < EOb(H(Xn)) for all n where {X I and {x I are asb n b nn n

in (4.12). Equivalently E(H(Xn)^ b) > E(H(Xn),, b). Letting b

and n gives EH(X) > EH(X*) and completes the proof.

The results in (4.13) contain those of (1.3) for situation (1.1)

as special cases.

0

0

0
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5. Various Extensions.

We can use (4.13) to obtain results for many functionals H which

are not local. To do this we need a sequence {H n} of local functionals

which satisfy the conditions in (a) or (b) and converge to H in a

sufficiently strong sense. Two examples of this are now given. The

details are omitted.

Our first example generalizes (2.2). Let 4 be an arbitrary function.

For I< n < define Hn by

1 if f(t) < i(t) for all te(-n,n),

Hn(f =

0 otherwise

H1,(f) = lim H (f) for all f. For n < - the functionals H satisfy
n n,*

the conditions of part (a) so that EH n(X) < EH n(X )" Letting n

Iyields P{X < 4}< P{X* < *}. To avoid the triviality 0 < 0 we must

demand that P(t) sufficiently fast as t ± .

The second example resembles those of (2.3). Let be any non-

negative function satisfying f, (t)dt < -. Let i be any increasing

nonnegative function which satisfies E4(X(t)) < -. For 1 < n <

define H by

n
H n(f) - j (t)*(f(t))dt.

H (f) - lim H (f) for all f. For n < - the functionals H satisfy
n n

the conditions of part (b) so that Hn (X) Hn(X*). Letting n yields
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H )(X)- (X). We briefly justify this last step. Clearly EHO(X) < .

,
For n < - we have EH (X) - EH (X) so that monotone convergencen n

yields EHk(X) - EH(X ). Therefore, as in the proof of (b), to verify

HCo(X) -3 H(X*) it suffices to show that EO(Ho,(X)) < EO(H.(X)) for

all increasing convex functions 0. Since EO(H n(X)) < EO(H n(X )) for

all n < -, this follows by monotone convergence.

4 Various conditions concerning the pulses may be relaxed without

changing the character of the results in (4.13). We have so far

considered only pulses which satisfy (4.1); the pulses are zero outside

4 of a bounded interval. Using (4.13) and taking limits, we can deal with

pulses satisfying the weaker condition

J go(t)dt < for all 0

This integral must be finite to ensure that P{X(t) < for all t} = 1.

We now sketch some of the development. Let E be an increasing

0function on (-,O] satisfying fl](t)Idt < - and t(0) f I. Let

be a decreasing function on [0,-) satisfying f0 1p(t)ldt < - and

*(O)=l. For I < n < and 0 > 0 let

E(t) for -n < t < 0,J 1 for 0 < t < e,
g(t) (-) for 0< t < n+0

0 otherwise

and define
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i

with Z i and T i as in the definition of L(X,F). Clearly xn(t) t X Mt

almost surely as n -) -. In any bounded interval this convergence will

Sbe uniform (almost surely). For n < -, the processes X n  satisfy the

requirements of (4.13). If H is sufficiently regular so that
EH(X ) - lim EH(Xn) or more strongly EO- li E(H(X n for

n-7'o n-

all convex 0, then the results of (4.13) will extend to H(X0). For

example, if H is an increasing local functional satisfying

H(XO) = lim H(Xn) almost surely, then all of the results in (4.13)
n- Om

extend by just using the monotone convergence theorem.

In sections 1 and 4 the amplitude of the pulses was arbitrarily

chosen to be one. The results proved in section 4 also hold when the

amplitude and shape of the pulses are allowed to vary randomly. Let

{ge,a: e > d(a),atsA} be a parametric family of pulses with the parameter

a taking values in a set A. Assume that for any fixed value a0 EA,

the family {ge a 0: d(0)} satisfies (4.1) and (4.2).

For example, suppose {g~i):O > d } for 1 < i < k are k different

parametric families each satisfying (4.1) and (4.2). Take A - {l,2,...,k}

and define ge'a = go and d(a) = da for a E A. For another example,

let {g,:O > d} satisfy (4.1) and (4.2) and define gea = age,

A = {a:c >0} and d(a) = d. In this example, the parameter a determinesI

the amplitude of the pulse and 0 determines the duration.

With periodic pulses {g4, :d(a) < 0 < P,aEA} defined by

g,(t W I go, (t-iP),

29
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we may define a periodic process

n
x(t) = gi iW (t-i )

where T,T 2,.. .,Tn  are i.i.d. uniform on [0,P) and (ZI,WI),

(Z2,W2),...,(Z nWn) are indpendent random vectors. The probability

measure of (Zi,Wi) is denoted Pi and we assume that

Prob{d(Wi) < Zi < P,Wi EA} - 1 for all i. The notation

X P C(11 1 2,..., n) is used to refer to this process. The analog

* of (4.4) for this process is now given.

(5.1) Theorem: Let X ' Cp(ili 2 ,...,'n) and X C

Assume for all i that (ZiWi) % Ii and (ZI'WI) "' i satisfy
dist. W and E(0(;)wia) < E(O(Z*)IWi-=c) for all a cA and

all convex functions 0. If H > 0 and H is L-superadditive, then

EH(X) < EH(X*).

The proof is basically the same as that of (4.4). Assume that

S 11i for 1 < i < n-i. Without loss of generality, we can then

take Ti "Ti, W iW: and Zi -Z 1  for l<i <n-. Since

* dist.*W n W we can also assume W = W . Now lemma (4.5) shows thatn n n ni

the theorem holds conditionally given the values of TI,T2,. ..,Tn,

Zl,Z 2,... ,Znl,Wl,W2,.... ,W

• We could parallel the development of section 4 and prove a more

general version of (4.13) based on (5.1). Instead, we shall just state

a special case. Let Ti, Zi and {g8 :6 > d} be as in the definition of

3
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L(X,F). Let {Y :- < j < } be nonnegative random variables which are

i.i.d. according to a distribution G. Define the process X"%L(X,F,G)

by

X(t) = 9 Yig.(t-Ti)

I Thus X is a superposition of pulses having both random amplitudes and

durations.

(5.2) Theorem: Let XnL(X,F,G) and X '/L( ,F ,G )with X *,

•* *

G - G and F - F . If H is local, nonnegative and L-superadditive,

then EH(X) < EH(X ).

The proof is omitted.

0

0
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6. Weaker Results for More General Pulse Shapes.

Weaker conclusions may be obtained under weaker assumptions on the

form and duration of the pulses. Let {g,:8 > d} be a family of pulses

Uwhich satisfies (4.1) and the condition given below.

go+C+6> g v+E I (Sgo+6 ) and

(6.1) Sg 0 > Ag+E A (SEg+ 6) for all

6 > d, e > 0, 6 > 0

,I

This condition is the same as (4.2) except that "-" has been replaced by

Two examples of parametric families of pulses which satisfy (6.1)

with d-O will now be given. Let I be any increasing function on

[0,-o) with i(0) > 0. For our first example, for all e > 0 define

6ott )"  j(e-t) for 0 < t <,

I_ 0 otherwise

The second example is a family of symmetric pulses defined for 0 > 0

by

I J (t) for 0< t < /2
ge(t) W i(-t) for 0/2 < t < 0,

0 otherwise.

The verification of (6.1) is easy for both examples.
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We also use a weaker version of the variability ordering defined

as follows. Let Y and Z have distributions F and G respectively.

Assume EY > - and EZ > -. If EO(Y) < EO(Z) for all functions

R - R which are increasing and convex, then we say that F< t G

or equivalently Y-? tZ. This version of the variability ordering is

frequently used. See the references given in section 1.

4Using the family {g,:e > d} satisfying (4.1) and (6.1), we define

the process X % L(X,F) as in section 4. With only minor changes in

the proof we can obtain the following modification of theorem 4.10.

(6.2) Theorem: Let X nu L(X,F) and X* L(X ,F with X*

and F " ? F*. Suppose that H is a local functional defined on a

sufficiently large class of functions. Assume that F and F have

bounded support, F(B) - F*(B) 1 1 for some B < . If H is nonnegative,

increasing and L-superadditive, then H(X) t + H(X ) which further implies

that EH(X) < EH(X ).

* Proof: Let {g,: d < e< P} be periodic pulses with period P

defined as in section 4. Property (4.3) holds as stated because replacing

(4.2) by the weaker condition (6.1) is compensated for by imposing the

I additional condition that H be increasing. The proof of (4.4) proceeds

as before except that the crucial lemma 4.5 must be slightly modified as

follows.

(6.3) Lemma: Let H satisfy the conditions in (6.2). For d < e < P

and any function f define

4(O) - H(f+Stg;)dt
foo
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Let Y1 and Y2 be random variables taking values in [d,P). If

Y 1 Y2' then EO(Y 1 ) < E (Y2).

To prove this lemma just show that P is increasing and convex on

[d,P) by following the pattern of (4.5).

We have now shown that when X and X are periodic processes

like those in (4.4), EH(X) < EH(X*) for all H satisfying the conditions

I of (6.2). By the next lemma, this implies H(X) t+H(X*).

(6.4) Lemma: If 0 is increasing and convex and the functional H

is increasing and L-superadditive, then the composition 0 o H is

increasing and L-superadditive.

This property is given by Topkis in [13]. The proof is similar

to lemma 4.7.

Transforming the result for the periodic processes into theorem 6.2

is accomplished by the same arguments which took us from (4.4) to (4.9)

and then to (4.10).

3
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7. Notes on the Variability Ordering.

The next three lemmas are needed to complete the proof of lemma 4.5.

Let 4 : J - [0,-o] where J is any convex subset of the real numbers.

3o We assume that 4'(w) + O(z) > W(x) + 4)(y) whenever w,x,y,z EJ,

w< x<y <z and w+z - x+y. Let D denote the effective domain of 4',

D = {x:(P(x) <

1 (7.1) Lemma: The set D is convex and 4D is a convex function on

D.

Proof: If D is empty or consists of a single point, the lemma is

trivial. Suppose 4'(a) < -, 4'(b) < - and a< x<b. Then

4'(a) + 4'(b) > 4(x) + 4(a+b-x) > 4'(x) since 4' > 0. Thus 4 is bounded

above by 4'(a) + 4(b) on the interval [a,b]. The function 4 is

midconvex; 4(w) + 4D(z) > 20((w+z)/2) forall w,zJ. A result due to

Jensen (see section 72 of Roberts and Varberg [4]) shows that a mid-

convex function bounded above on [a,b] is convex on [a,b]. This

completes the proof since a and b are arbitrary members of D.

(7.2) Lemma: Suppose that X-5 Y. If Prob{Y > ci - 1, then

Prob(X > c} - 1 and Prob{X-c} < Prob{Y -c}. If Prob{Y < d} - 1,

then Prob{X < d} = 1 and Prob{X =d} < Prob{Y -d}.

Proof: (z)+ will denote the positive part of z, (z)+=max(z,O).

C Define f(x) - (x-d)+. f is convex and finite on the entire real line

so that Ef(X) < Ef(Y). Prob{Y < d} - 1 implies Ef(Y) - 0 so that

Ef(X) = 0 and Prob{X < d} 1 1. Now define fn(X) n n(x-d+l/n) . For

Sx < d we have Ifn(x)I < 1 for all n and
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1 if x -d,

nm  fnCX) = d
10 if x< d.

fn is convex and finite so that Ef n(X) < Ef n(Y) for all n. Assuming

Prob{Y < d} = I and using the bounded convergence theorem yields

ProbiX =d} < Prob{Y =dJ. The proof of the other statement is similar.

E A convex function ' is called proper if '(x) < -' for at least

one x and P(x) > -- for all x.

(7.3) Lemma: Let i by any proper convex function. If X-C Y,

* then Eip(X) < Eip(Y).

Proof: We assume first that ' is closed. This means that

{x:i(x) < a} is a closed set for all a. Define (*(y) = sup{xy-4(x)}
x

and '**(x) = sup{xy- (y)}. t* is a proper closed convex function and
** y

"" 1P (see section 12 of Rockafellar [51). Choose yo such that

'P*(yo) < -. Define Cn(x) = sup{xy-P (y):Y0-n < y < y0+n}. It is

easily seen that 'n is convex for all n. The following argument

shows that n x) < = for all n and x. Choose x0 such that

'(xO) < -. Clearly ' (y) > xoy-P(x0 ) for all y. Thus

'n(X) < sup{y(x-x 0 )+ (X):yo-n<y<y0 +n} < p1x-x0 1 + '(xO) where

p = max(Iy-n[Y0+nj). Therefore EqCn(X) < Elpn(Y) for all n. Since

'P 'Pwe have '(x) n W P(x) as n for all x. Also note that

'P(X) > xy 0 - (yo) for all x and n. Thus 'n (X) and 'nP(Y) are

bounded below by random variables having finite means and we may apply

the monotone convergence theorem to conclude E'P(X) < EIP(Y).

0
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C *Now let 4 be any proper convex function. Let B be the effective

domain of 4, B = {x:t(x) < -}. There exists a proper closed convex

function f which agrees with 4 except perhaps on the boundary of

* B (denoted DB). More precisely, i(x) = f(x) for xe 9B and

4'(x) > f(x) for xE 3B (see section 7 of Rockafellar [51). Our

conclusion now follows from lemma 7.2 and the previous paragraph.

For example, suppose B = [c,d]. If Prob{c < Y < d} < 1, then

Eip(Y) = - and therefore E4(X) < Ei(Y) as desired. Now assume

Prob{c < Y < dl = 1. Lemma 7.2 implies Prob{c < X < dl = 1,

Prob{X=cl < Prob{Y=cl and Prob{X=d} < Prob{Y-d}. Let a = 4(c)-f(c)

and W = (d)-f(d). We can write

a Ei(X) = Ef(X) +a ProbtX=c} + ProbX=d}

and similarly for E4(Y). Since a > 0, > > 0 and Ef(X) < Ef(Y),

we immediately conclude E4(X) < E(Y).

Extending the definition of D by taking D(x) = for x t J

makes D into a proper convex function. Thus X - Y implies

E$(X) < EP(Y) and the proof of (4.5) is complete.

We now give a proof of lemma 4.11. The following facts will be

needed.

* (7.4) Let V and W be nonnegative random variables with EV <

and EW < having distributions F and G respectively.

(a) EV = EW if and only if J (G(x)-F(x))dx = 0

(b) If EV = EW, then V W if and only if J (G(x)-F(x))dx > 0

for all t.
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Fact (a) is elementary. Fact (b) is a minor variant of results in

sections 1.3 and 1.4 of Stoyan 1121 or section 8.5 of Ross [7].

Proof of (4.11): Suppose V-& W with V and W as in (7.4).

Define a = sup{x:F(x) < 1} and B = sup{x:G(x) < i. F - G implies

< B by lemma 7.2. Note that E(VAt) is continuous and strictly

increasing in t for t < a and E(W At) is continuous and strictly

increasing in t for t < B. Since (x) = x A t is a concave

function, E(Vr t) > E(Ws t) for all t. If B < -, then a <

and the lemma is trivial, just take V = V and W = W for all n.n n

So assume a = -. a may be finite or infinite. The proof proceeds

in two cases.

First case, assume Prob{V=a}=0. Choose a nonnegative sequence

cx I satisfying a ta and a < a for all n. Define V = V Nt(nn n n n

for all n. Clearly V n and V n V. Since E(WA n) < E(V/a noraln Clrl Vn n n - n

< EV = EW, there exists a unique Bn such that Bn > a andn n

* E(W\ n = EV . Define Wn = W ran for all n. Since EVn t EV, we

have B t o and thus W + and W > W. Let F and G be the
n n n n n

distributions of V and W respectively. Define

E n(t) = ft (G (x)-F (x))dx. inp(t) > 0 for t < a because
n 0 n n n n

Gn (x)-F n(x) = G(x)-F(x) for x < n (t) is decreasing when

c n < t < Bn because F (x) = 1 for x > an. Finally, n (t) = 0 for

t > because EV EWn  Thus t) > 0 for all t so that

Fn G n by (7.4b).

Second case, assume a < - and ProbtV=a} > 0. E(W A ) < EV so

there exist c and d such that c < a < d and E(VA c) = E(WAd).
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As in the first case we have (VA c)- (WAd). Let U be a random

variable which is uniformly distributed on the interval (0,1) and

independent of V and W. Define

IV 1c if U <i
V n =

V if U >-.--n

Clearly V + and V n> V. Since E(W Ad) < EV < EV = EW, theren n I n

exists n > d such that E(W ̂ a) = EV . Define W = WA n .

EV n EV implies a n t so that W n and W n> W. Now we usen n n n

V -4 W, (VtAc) (W Ad) and (7.4) to show this construction gives

V n3 W as desired. Let V , Wn , VAc, WA d have distributions•n n n

.denoted by Fn, Gn , F(c), G(d) respectively. Note that

F -1 F + (1 - )F. The ordering -C is preserved by mixtures so
n =  n (c) n

that F -- 1 G ( --!)G. Again define t) t ( (x)-F (x))dx.
n n (d) n n 0 n n

Since G(d)(x) + (I-I)G(x) - G(x) - G (x) for x < d, nCt) > 0

for t < d. n (t) is decreasing when d < t < an  because d > a

and F(x) 1 for x > a. n Ct) = 0 for t > an  because EV -EW

Thus )n(t) > 0 for all t and the proof is complete.
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8. An Attempt to Use Shot Noise in Models for Neuron Firing.

This report deals with a shot noise process X(t) which is formed

by the superposition of random pulses (or shot effects) which arrive at

random times according to a Poisson process. One area in which shot

noise processes arise is in the construction of models in the neural

sciences. This is because the cell membrane potential in neurons is

formed by the superposition of distinct contributions (pulses) arising

from the many hundreds (or thousands) of synapses which impinge on each

neuron. A contribution from an excitatory (inhibitory) synapse is

represented by a pulse having a positive (negative) amplitude. In the

simplest models the neuron fires (produces an action potential) whenever

the membrane potential at the axon hillock exceeds a certain threshold

£E value (except for complications introduced by the presence of absolute

and relative refractory periods).

For a brief description of the functioning of neurons and a catalog

of mathematical models which have been developed to explain the spike

trains of single neurons, see Sampath and Srinivasan [B]. Many of the

models contained therein share some of the features of shot noise (for

6 example, see model 7.6 on page 100). We note also that Bevan, Kullberg

and Rice [A] have used a shot noise process with rectangular pulses to

model the acetylcholine induced membrane noise which occurs at the neuro-

6 muscular junction.

This report was initially motivated by a desire to prove results

concerning the spike trains of single neurons. In particular, let U(X)

4 denote the number of upcrossings of the threshold value made by the shot
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I *noise process X during the time period (0,T). In a simple model of

neuron firing, U(X) will be the random number of spikes produced

during a period of length T. In more complicated models, the number

of spikes can be written as a more complicated functional of the process

X. However, I was unable to obtain strong results for these functionals.

The functional U does not satisfy the conditions for applying Theorem

4(1.3). Attempts were made to weaken these conditions. The conditions

used in statements (c) and (d) of Theorem (4.10) are weaker than those

in (1.3). The functional U satisfies the conditions in (c) but the

conclusion EU(X) < EU(X*) is quite weak since in fact EU(X) = EU(X*).

The conclusion of (d) is stronger, but U fails to satisfy all the

conditions in (d).

I4
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